Noninvasive magnetic resonance imaging of transport and interstitial fluid pressure in ectopic human lung tumors.
نویسندگان
چکیده
Tumor response to blood borne drugs is critically dependent on the efficiency of vascular delivery and transcapillary transfer. However, increased tumor interstitial fluid pressure (IFP) forms a barrier to transcapillary transfer, leading to resistance to drug delivery. We present here a new, noninvasive method which estimates IFP and its spatial distribution in vivo using contrast-enhanced magnetic resonance imaging (MRI). This method was tested in ectopic human non-small-cell lung cancer which exhibited a high IFP of approximately 28 mm Hg and, for comparison, in orthotopic MCF7 human breast tumors which exhibited a lower IFP of approximately 14 mm Hg, both implanted in nude mice. The MRI protocol consisted of slow infusion of the contrast agent [gadolinium-diethylenetriaminepentaacetic acid (GdDTPA)] into the blood for approximately 2 hours, sequential acquisition of images before and during the infusion, and measurements of T1 relaxation rates before infusion and after blood and tumor GdDTPA concentration reached a steady state. Image analysis yielded parametric images of steady-state tissue GdDTPA concentration with high values of this concentration outside the tumor boundaries, approximately 1 mmol/L, declining in the tumor periphery to approximately 0.5 mmol/L, and then steeply decreasing to low or null values. The distribution of steady-state tissue GdDTPA concentration reflected the distribution of IFP, showing an increase from the rim inward, with a high IFP plateau inside the tumor. The changes outside the borders of the tumors with high IFP were indicative of convective transport through the interstitium. This work presents a noninvasive method for assessing the spatial distribution of tumor IFP and mapping barriers to drug delivery and transport.
منابع مشابه
Design and Fabrication of a Four-Dimensional Respiratory Phantom for Studying Tumor Movement in Radiotherapy with Magnetic Resonance Imaging
Introduction: In radiation therapy, determining the location of the tumor accurately during irradiation is one of the most important requirements. However, lung tumors are not fixed in a single location and move during irradiation due to respiratory motion. Due to limitations in assessing such movements, using a lung phantom can be useful and operational for their fast, easy an...
متن کاملLymph node metastasis in breast cancer xenografts is associated with increased regions of extravascular drain, lymphatic vessel area, and invasive phenotype.
Interactions between the tumor stromal compartment and cancer cells play an important role in the spread of cancer. In this study, we have used noninvasive in vivo magnetic resonance imaging (MRI) of two human breast cancer models with significantly different invasiveness, to quantify and understand the role of interstitial fluid transport, lymphatic-convective drain, and vascularization in the...
متن کاملCharacterizing extravascular fluid transport of macromolecules in the tumor interstitium by magnetic resonance imaging.
Noninvasive imaging techniques to image and characterize delivery and transport of macromolecules through the extracellular matrix (ECM) and supporting stroma of a tumor are necessary to develop treatments that alter the porosity and integrity of the ECM for improved delivery of therapeutic agents and to understand factors which influence and control delivery, movement, and clearance of macromo...
متن کاملImaging intratumoral convection: pressure-dependent enhancement in chemotherapeutic delivery to solid tumors.
PURPOSE Low-molecular weight (LMW) chemotherapeutics are believed to reach tumors through diffusion across capillary beds as well as membrane transporters. Unexpectedly, the delivery of these agents seems to be augmented by reductions in tumor interstitial fluid pressure, an effect typically associated with high-molecular weight molecules that reach tumors principally through convection. We inv...
متن کاملThe Utility of Diffusion Weighted Magnetic Resonance Imaging in Detection of the Origin of the Brain Solid Metastatic Tumors
Background: Early diagnosis of brain tumors has significant effect on the treatment process. Brain metastatic tumors are usually diagnosed following the neurological symptoms in patients or incidentally after Computerized Tomography (CT) scan and Magnetic Resonance Imaging (MRI) requests of the brain. Objectives: Implementation of a new method for being informed about the origin of brain tumors...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 66 8 شماره
صفحات -
تاریخ انتشار 2006